SPHINCTER PRESERVING SURGERY IN RECTAL CANCER

Art Hiranyakas, M.D., PhD. FACS., FASCRS., FRCST., FRCFPT.(Hon.), FICS.(Governor)

Professor & Director, Colorectal Surgery Clinic, Bangkok Hospital Headquarters. Bangkok-Phuket Colorectal Disease Institute.

- RCT, international trial conducted in 30 hospitals.
- From January 2004 through May 2010.
- Laparoscopic or open surgery in a 2:1 ratio.
- Primary end point: locoregional recurrence at 3 years.
- Secondary end points: disease-free and overall survival.

- 1,044 patients included (699 in the laparoscopic).
- The conversion rate: <u>16%</u>.
- In the laparoscopic-surgery group
 - operating time: 52 minutes longer.
 - bowel function: 1 day earlier.
 - hospital stay: 1 day shorter.

Type of Lesion and Surgery	Involved Circum Ma	nferential Resection	Locoregional Recurrence in Intention-to-Treat Population		
	Patients with Finding†	Between-Group Difference‡	Rate	Between-Group Difference‡	
	no./total no. (%)	percentage points (95% CI)	%	percentage points (90% CI)	
All lesions					
Laparoscopic surgery	56/588 (10)	-0.5 (-4.9 to 3.5)	5.0	0.0 (-2.6 to 2.6)	
Open surgery	30/300 (10)		5.0		

COMPARISON

	Preoperative Radiation	Conversion	Locoregional Recurrence	+CRM
CLASICC, 2007	28.1%, 28.7%	36% then 16%	9.7%, 10.1%	16%,
COLORII, 2015	59%, 58%	16%	4.3%, 6.3%	10%,

Jayne D, et al. J Clin Oncol 2007. Bonjer J, et al. N Engl J Med 2015.

IMPACTS OF CONVERSION

 Conversion to an open operation after attempted laparoscopic colorectal resection <u>increased postoperative morbidity</u> and prolonged hospital stays. The overall survival is similar, but carcinoma-free survival is compromised.

Chan AC, et al. Surg Endosc 2008.

 Conversion in laparoscopic surgery for curable colorectal cancer is associated with <u>a worse perioperative outcome and worse disease-free survival</u>.

White I, et al. JSLS 2011.

IMPORTANCE OF CONVERSION FOR RESULTS OBTAINED WITH LAPAROSCOPIC COLORECTAL SURGERY

- A multicenter, prospective, observational study
- 33 institutions in Germany, Austria, and Switzerland
- 1,658 patients, August, 1995 to February, 1999
- conversion rate was 5.2 percent (n=86)

Marusch F, et al. Dis Colon Rectum 2001.

IMPORTANCE OF CONVERSION FOR RESULTS OBTAINED WITH LAPAROSCOPIC COLORECTAL SURGERY

- The patients requiring a conversion were significantly BMI
- <u>Resections of the rectum</u> were associated with a higher risk for conversion
- Conversion group
 - Intraoperative complications (27.9 vs. 3.8%)
 - Duration of the operation
 - Postoperative morbidity (47.7 vs. 26.1%), and mortality (3.5 vs. 1.5%)
 - A Recovery time, and postoperative hospital stay

Marusch F, et al. Dis Colon Rectum 2001.

LAPAROSCOPIC RESECTIONS FOR COLORECTAL CANCER: <u>DOES CONVERSION EFFECT SURVIVAL</u>?

- 377 laparoscopic resections for colorectal cancer, a prospective database
- November 1991 and June 2002
- 46 conversions: <u>12.8%</u>
- The converted group had a significantly higher weight (75 kg vs.
 69 kg, p = 0.013)
- Median follow-up was 30.5 months

Moloo H, et al. Surgical Endoscopy 2004.

LAPAROSCOPIC RESECTIONS FOR COLORECTAL CANCER: DOES CONVERSION SURVIVAL?

 Significantly lower 2-year survival after converted procedures as compared to laparoscopic group

(75.7% vs. 87.2%, *p* = 0.02)

• A trend toward lower 5-year survival

(61.9% vs. 69.7%, *p* = 0.077)

Moloo H, et al. Surgical Endoscopy 2004.

CAN THE ROBOT HELP?

ROBOTIC VS. LAPAROSCOPIC RESECTION FOR RECTAL CANCER: THE ROLARR TRIAL

- International, multicenter trial (29 hospital 10 countries 40 surgeons).
- RCT comparing robotic assisted versus laparoscopic curative rectal cancer surgery.
- 471 patients (237 robotic versus 234 laparoscopic).
- 45% neoadjuvant chemotherapy.

Pigazzi A., presented in ASCRS Annual Meeting 2015.

ROBOTIC VS. LAPAROSCOPIC RESECTION FOR RECTAL CANCER: THE ROLARR TRIAL

- NO statistically significant advantages to robotic TME relative to
 - number of nodes (23.43)
 - quality of TME (75% complete)
 - involvement of circumferential margins (5.7%)
 - 30 day morbidity (32.4%)

Pigazzi A., presented in ASCRS Annual Meeting 2015.

ROBOTIC VS. LAPAROSCOPIC RESECTION FOR RECTAL CANCER: THE ROLARR TRIAL

- Failed to demonstrate any statistically significant advantage relative to conversion rate (8.15 vs 12.2%).
- Similar short term oncologic outcomes.

Pigazzi A., presented in ASCRS Annual Meeting 2015.

LIMITATIONS OF LAPAROSCOPIC TME

- Prospectively collected data
- January 2007 and December 2008
- 40 patients (21 LAR, 19 LPT), 92% men

	LAR	LPT
	(n=21)	(n=19)
Age (yr) ¹	61.3 SEM 2.40	61.2 SEM 3.15
Male/female ratio	21/0	16/3
Body mass index $(kg/m^2)^1$	26.1 SEM 0.8	26.7 SEM 1.6
ASA score ²	2 (1-3)	2 (1-3)
Lower margin of tumor from a	nal verge ³	
<8 cm	11 (52.4)	10 (52.6)
8-12 cm	10 (47.6)	9 (47.4)
Tumor greatest diameter ³		
<u><</u> 4 cm	15 (71.4)	15 (78.9)
>4 cm	6 (28.6)	4 (21.0)
Tumor stage ³		
pT/ypT0	1 (4.8)	0 (0)
pT/ypT1	2 (9.5)	2 (10.5)
pT/ypT2	8 (38.1)	4 (21.1)
pT/ypT3	10 (47.6)	13 (68.4)

	LAR	LPT
	(n=21)	(n=19)
Operating time (hrs) ¹	2.7 SEM 0.2	2.9 SEM 0.1
Extraction wound size (cm) ¹	3.1 SEM 0.3	NA
Estimated blood loss (ml) ¹	46.2 SEM 9.2	78.6 SEM 18.3
Conversion ²	2 (9.5)	1 (5.3)

	LAR	LPT	
	(n=21)	(n=19)	
Pain score ^{1,2}	5.9 (7.6)	6.4 (1.6)	
Time for ileostomy to start function ¹	2.6 (0.3)	3.6 (0.6)	
Hospital stay ¹	6.8 (0.7)	11.5 (3.7)	
At 2 years follow up			
-Bowel movements ^{1,3}	3.5 (0.9)	2.4 (0.6)	
-Wexner incontinence score ^{1,3}	3.3 (2)	1.3 (0.8)	
At the last follow up (mean, months)	33.4 SEM 1.3	33.5 SEM 1.5	
-Bowel movements ^{1,3}	2.6 (0.8)	2.2 (0.5)	
-Wexner incontinence score ^{1,3}	1.0 (1)	1.1 (0.8)	

LAPAROSCOPIC ULTRALOW ANTERIOR RESECTION VERSUS LAPAROSCOPIC PULL-THROUGH WITH COLOANAL ANASTOMOSIS FOR RECTAL CANCERS: A COMPARATIVE STUDY.

• Benign anastomotic strictures were higher after LPT

(n = 4, LAR n = 0, P = .042)

• LPT may be considered selectively for a bulky distal rectal tumor in a small pelvis with comparable functional results.

	LPT (30)	LAR (147)	P-value
Neoadjuvant chemoradiotherapy	9 (31.0%)	61 (43.3%)	0.2230
Tumor site - Midrectum - Low rectum	8 (26.7%) 22 (73.3%)	75 (51.0%) 72 (49.0%)	0.0149*
Tumor size (median, cm)	4	4	0.2649

Operative outcomes

	LPT (30)	LAR (147)	P-value
Operative time (mins)	164.8	130.4	< 0.0001 *
Operative blood loss (mL)	96.4	70.9	0.3569
Conversion	3 (10.0%)	12 (8.2%)	0.7221
Complete mesorectum	9 (50.0%)	66 (76.7%)	0.0608

Operative outcomes (cont.)

	LPT (30)	LAR (147)	P-value
Distal resection margin (cm)	2.9	4.4	0.0920
Positive CRM	1 (3.3%)	4 (3.6%)	0.3569
Return of bowel function (days)	4.9	4.5	0.5746
Hospital stay (days)	11.3	7.7	0.0726

Long-term outcomes

	LPT (30)	LAR (147)	P-value
Follow-up time (months)	46.4	37.4	0.5610
Overall survival	75.0%	89.1%	0.0627
Local recurrence	1 (3.3%)	1 (0.7%)	0.3127
Systemic recurrence	5 (16.7%)	17 (11.6%)	0.5427

THE APPLICATION OF TATME FOR PATIENTS WITH MIDDLE AND LOW RECTAL CANCER A SYSTEMATIC REVIEW AND META-ANALYSIS

- PubMed, Embase, and Web of Science inception to Feb 15, 2017.
- 13 studies were included, which enrolled 859 patients (TaTME 414).
- 3 RCTs and 10 MCCs comparing TaTME with LaTME for rectal cancer.

Macroscopic Quality of Mesoretum

	TaTM	IE	LaTN	IE		Odds Ratio		Odd	s Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fix	ed, 95% Cl
Velthuis2014	24	25	18	25	4.2%	9.33 [1.05, 82.78]	2014		
Denost 2014	35	50	31	50	54.2%	1.43 [0.62, 3.29]	2014	-	
Fernandez 2015	27	32	24	32	21.8%	1.80 [0.52, 6.25]	2015	-	
de'Angelis 2015	34	37	35	37	0.0%	0.65 [0.10, 4.12]	2015		
Perdawood2016	20	25	17	25	19.8%	1.88 [0.52, 6.84]	2016	-	-
Total (95% CI)		132		132	100.0%	1.93 [1.09, 3.42]			+
Total events	106		90			ALC DUSTING INT			
Heterogeneity: Chi ² =	2.52, df=	3 (P=	0.47); 12:	= 0%			F	~ ~	
Test for overall effect	: Z = 2.25	(P = 0.0	02)				U	Favours [TaTME]	Favours [LaTME]

Positive Circumferential Resection Margin

	TaTM	IE	LaTM	IE	A 4 4 4 4	Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Denost 2014	2	50	9	50	28.8%	0.19 [0.04, 0.93]	2014	
Velthuis2014	1	25	2	25	6.4%	0.48 [0.04, 5.65]	2014	
Kanso 2015	5	51	3	34	10.8%	1.12 [0.25, 5.04]	2015	
Fernandez 2015	0	37	0	37		Not estimable	2015	
de'Angelis 2015	1	32	3	32	9.7%	0.31 [0.03, 3.17]	2015	
Marks 2016	0	17	1	17	4.9%	0.31 [0.01, 8.27]	2016	
Lelong 2016	2	34	4	38	11.8%	0.53 [0.09, 3.10]	2016	
Perdawood2016	1	25	2	25	6.4%	0.48 [0.04, 5.65]	2016	
Chen 2016	2	50	10	100	21.3%	0.38 [0.08, 1.78]	2016	
Total (95% CI)		321		358	100.0%	0.43 [0.22, 0.82]		+
Total events	14		34			and successively		
Heterogeneity: Chi ² =	: 2.80, df=	7 (P=	0.90); 17:	= 0%				
Test for overall effect	Z = 2.57	(P = 0.0	01)					Favours [TaTME] Favours [LaTME]

Conversion

	TaTN	IE	LaTM	1E		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Denost 2014	2	50	5	50	17.4%	0.38 [0.07, 2.03]	2014	
Kanso 2015	0	51	2	34	10.7%	0.13 [0.01, 2.71]	2015	
de'Angelis 2015	1	32	1	32	3.5%	1.00 [0.06, 16.71]	2015	
Fernandez 2015	0	37	0	37		Not estimable	2015	
Pontallier2016	2	38	3	34	10.8%	0.57 [0.09, 3.66]	2016	
Lelong 2016	1	34	9	38	29.8%	0.10 [0.01, 0.82]	2016	
Perdawood2016	0	25	4	25	16.0%	0.09 [0.00, 1.84]	2016	
Marks 2016	0	17	0	17		Not estimable	2016	
Chen 2016	1	50	5	100	11.8%	0.39 [0.04, 3.41]	2016	
Total (95% CI)		334		367	100.0%	0.27 [0.12, 0.59]		•
Total events	7		29			1-1-0-1-0-1-0-0		
Heterogeneity: Chi ² =	3.34, df=	6 (P =	0.77); F=	= 0%				toor of the other
Test for overall effect:	Z= 3.25	(P = 0.0	001)					Favours [TaTME] Favours [LaTME]

THE APPLICATION OF TATME FOR PATIENTS WITH MIDDLE AND LOW RECTAL CANCER A SYSTEMATIC REVIEW AND META-ANALYSIS

 Not significant intraoperative and postoperative complications between the 2 groups

THE APPLICATION OF TATME FOR PATIENTS WITH MIDDLE AND LOW RECTAL CANCER A SYSTEMATIC REVIEW AND META-ANALYSIS

 TaTME was associated with a reduction in the positive CRM rate, TaTME thus could achieve complete tumor resection and improve long-term survival of patients with mid- and low-rectal cancer.

